Comparison of computational methodologies for ignition of diffusion layers
نویسندگان
چکیده
The prediction of the auto-ignition delay time of fresh fuel in hot air is studied. This problem, encountered in many combustion systems, is in practice often calculated using a simple method, hereafter called homogeneous mixing ignition (HMI). This method however neglects transport effects and calculates local instead of global ignition properties. A second method is therefore studied called linear mixing ignition (LMI) and consists of the direct simulation of a one-dimensional mixing layer. This method is tested in a hydrogen and methane fuel configuration using detailed and reduced chemistry mechanisms. The results indicate that molecular transport increases the ignition delay, for the methane fuel by about a factor three, but this effect is compensated in the hydrogen case by the small Lewis number of the fuel. Such detailed information is not provided by the HMI method and the LMI approach appears therefore as a minimum requirement for the correct estimation of the ignition delay time.
منابع مشابه
Modeling of Diffusion Propagation due to Ignition of Karaj Oil Depot using Computational Fluid Dynamics Method
Background and Aim: This study investigates the distribution of pollutants from the oil storage ignition scenario using Ensys Fluint software has studied and for the first time in the country the dangerous and unexpected scenarios of explosion and ignition in oil sites using advanced Fluent and monitoring software and aims to preserve the life and financial assets of the areas around the oil de...
متن کاملEffect of Injection Characteristics on Emissions and Combustion of a Gasoline Fuelled Partially-premixed Compression Ignition Engine
Conventional compression ignition (CI) engines are known for their high thermal efficiency compared to spark ignited (SI) engines. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to NOx emission reduction. In this paper, a numerical study of a gasoline fuel...
متن کاملNumerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution
A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...
متن کاملInfluence of varying timing angle on performance of an SI engine: An experimental and numerical study
Engine performance depends on two main factors of engine speed and ignition time. Ignition timing can affect engine life, fuel economy and engine power. In this paper, to study engine performance of Peugeot 206 TU3A with comparison ratio of 10.5:1 and displacement of 1361CC in MATLAB software, a two-zone burned/unburned model with the fuel burning rate described by aWiebe function was used for ...
متن کاملNumerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics
Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...
متن کامل